

Leistungserklärung

Stahldübel

gültig für MÜPRO Stahldübel

Dieses Dokument der MÜPRO dient nur zur Information und unterliegt nicht dem Änderungsdienst.

Der gesamte Inhalt darf für werbliche oder andere Zwecke nur nach Genehmigung durch die MÜPRO verwendet werden. Alle Rechte und Änderungen vorbehalten.

Leistungserklärung gemäß Verordnung (EU) Nr. 305/2011

DoP Nr. MP Stahldübel 20160202

1. Eindeutiger Kenncode des Produkttyps:

MÜPRO Stahldübel

2. Typen-, Chargen- oder Seriennummer oder ein anderes Kennzeichen zur Identifikation des Bauprodukts gemäß Artikel 11 Absatz 4:

ETA-05/0160, Anhang A3

Chargennummer: siehe Verpackung

3. Vom Hersteller vorgesehener Verwendungszweck oder vorgesehene Verwendungszwecke des Bauprodukts gemäß der anwendbaren harmonisierten technischen Spezifikation:

Produkttyp	wegkontrollierter Spreizanker
Für die Verwendung in	ungerissenem Beton C20/25 - C50/60 (EN 206)
Option	7
Belastung	statisch und quasi-statisch
Material	Stahl verzinkt: nur in trockenen Innenräumen enthaltene Größen: M6x30 ²⁾ , M8x30 ²⁾ , M8x40 ²⁾ , M10x30 ³⁾ , M10x40 ²⁾ , M12x50 ²⁾ , M12x80 ²⁾ , M16x65 ²⁾ , M16x80 ²⁾ , M20x80 ¹⁾ Nur Ausführung ohne Bund Ausführung mit und ohne Bund Nur Ausführung mit Bund
	nichtrostender Stahl (Prägung A4): in Innen- und Außenbereichen ohne besonders aggressive Bedingungen enthaltene Größen: M6x30, M8x30, M8x40, M10x40, M12x50, M12x80, M16x65, M16x80, M20x80 ¹⁾ Nur Ausführung ohne Bund
	hochkorrosionsbeständiger Stahl (Prägung HCR): in Innen- und Außenbereichen unter besonders aggressive Bedingungen enthaltene Größen: M6x30, M8x30, M8x40, M10x40, M12x50, M12x80, M16x65, M16x80, M20x80 ¹⁾
	1) Nur Ausführung ohne Bund
Temperaturbereich (gegebenenfalls)	

4. Name, eingetragener Handelsname oder eingetragene Marke und Kontaktanschrift des Herstellers gemäß Artikel 11 Absatz 5:

MÜPRO Services GmbH Hessenstrasse 11 65719 Hofheim-Wallau

- 5. Gegebenenfalls Name und Kontaktanschrift des Bevollmächtigten, der mit den Aufgaben gemäß Artikel 12 Absatz 2 beauftragt ist:
- 6. System oder Systeme zur Bewertung und Überprüfung der Leistungsbeständigkeit des Bauprodukts gemäß Anhang V:

System 1

- 7. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, das von einer harmonisierten Norm erfasst wird:
- 8. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, für das eine Europäische Technische Bewertung ausgestellt worden ist:

Deutsches Institut für Bautechnik, Berlin

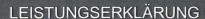
Folgendes ausgestellt:

ETA-05/0160

auf der Grundlage von

ETAG 001-4

Die notifizierte Produktzertifizierungsstelle 1343-CPR hat nach dem System 1 vorgenommen:


- Feststellung des Produkttyps anhand einer Typprüfung (einschließlich Probenahme),
 einer Typberechnung, von Werttabellen oder Unterlagen zur Produktbeschreibung;
- ii) Erstinspektion des Werks und der werkseigenen Produktionskontrolle;
- iii) laufende Überwachung, Bewertung und Evaluierung der werkseigenen Produktionskontrolle und Folgendes ausgestellt:

Zertifikat der Leistungsbeständigkeit 1343-CPR-M552-2

9. Erklärte Leistung

Wesentliche Merkmale	Bemessungsmethode	Leistung	Harmonisierte technische Spezifikation		
Charakteristischer	ETAG 001, Anhang C	ETA 05/0400 A 04.00			
Widerstand bei Zugbeanspruchung	CEN/TS 1992-4	ETA-05/0160, Anhang C1-C2	FTA C 004		
Charakteristischer	ETAG 001, Anhang C				
Widerstand bei Querbeanspruchung	CEN/TS 1992-4	ETA-05/0160, Anhang C3-C4	LIAGOOT		
Verschiebung im	ETAG 001, Anhang C	ETA 05/0160, Aphona C5			
Gebrauchszustand	CEN/TS 1992-4	ETA-05/0160, Anhang C5			

Wenn gemäß den Artikeln 37 oder 38 die Spezifische Technische Dokumentation verwendet wurde, die Anforderungen, die das Produkt erfüllt: --

10. Die Leistung des Produkts gemäß den Nummern 1 und 2 entspricht der erklärten Leistung nach Nummer 9.

Verantwortlich für die Erstellung dieser Leistungserklärung ist allein der Hersteller gemäß Nummer 4.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Hofheim-Wallau, 02.02.2016

i.V. Stefan Podszus, Qualitätsmanager

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80					
Montagesicherheitsbeiwert	gesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-]				[-] 1,2										
Stahlversagen															
Charakteristische Zugtragfähigkeit Stahl 4.6	$N_{Rk,s}$	[kN]	8,0	14,	6	23,	2	33,7	62,8	98,0					
Teilsicherheitsbeiwert	γMs	[-]		2		0									
Charakteristische Zugtragfähigkeit Stahl 5.6	$N_{Rk,s}$	[kN]	10,0	18,	3	18,0	20,2	42,1	78,3	122,4					
Teilsicherheitsbeiwert	γMs	[-]		2,0		1,	1,5			2,0					
Charakteristische Zugtragfähigkeit Stahl 5.8	$N_{Rk,s}$	[kN]	10,0	17,6	18,3	18,0	20,2	42,1	67,1	106,4					
Teilsicherheitsbeiwert	γMs	[-]		1,5											
Charakteristische Zugtragfähigkeit Stahl 8.8	$N_{Rk,s}$	[kN]	15,0	17,6	19,9	18,0	20,2	43,0	67,1	106,4					
Teilsicherheitsbeiwert	γMs	[-]			1	,5	/		1,	6					
Herausziehen															
Charakteristische Tragfähigkeit im Beton C20/25	$N_{Rk,p}$	[kN]	2)	2)	9	2)	2)	2)	2)	2)					
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0,3}$										
Betonausbruch und Spalten															
Verankerungstiefe	h _{ef}	[mm]	30	30	40	30	40	50	65	80					
Achsabstand (Randabstand) s _{cr,N}	(= 2 c _{cr,N})	[mm]			L	3 h _{ef}	L = 1,018								
S _{cr,sp}	(= 2 c _{cr,sp})	[mm]	190	190	190	230	270	330	400	520					
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]				10,1									

 $^{^{1)}\,\}mathrm{Nur}\,\mathrm{zur}\,\mathrm{Verwendung}$ in statisch unbestimmten Systemen und in trockenen Innenräumen $^{2)}\,\mathrm{Herausziehen}$ ist nicht maßgebend

MÜPRO Stahldübel verzinkt, A4, HCR

Leistuna

Charakteristische Werte bei **Zugbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C1

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähigl (Festigkeitsklasse 70)	keit N _{Rk,s}	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0
Charakteristische Zugtragfähigl (Festigkeitsklasse 80)	keit N _{Rk,s}	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0
Teilsicherheitsbeiwert	γ _{Ms} 3)	[-]				1,87			
Herausziehen									
Charakteristische Tragfähigkeit Beton C20/25	t im N _{Rk,p}	[kN]	2)	2)	9	2)	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	Ψc	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$	-			
Betonausbruch und Spalten									
Verankerungstiefe	h _{ef}	[mm]	30 ³⁾	30	40	40	50	65	80
Achsabstand (Randabstand)	s _{cr,N} (= 2 c _{cr,N})	[mm]				3 h _{ef}			
	S _{cr,sp} (= 2 C _{cr,sp})	[mm]	160	190	190	270	330	400	520
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]				10,1			<u> </u>

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen und in trockenen Innenräumen

MÜPRO Stahldübel verzinkt, A4, HCR

Leistung

Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C2

Herausziehen ist nicht maßgebend

3 Herausziehen ist nicht maßgebend

3 Beim Nachweis gegen Betonversagen nach ETAG 001, Anhang C oder CEN/TS 1992-4-4 ist N⁰_{Rk,c} mit dem Faktor (25/f_{ck,cube})^{0,2} zu multiplizieren.

Tabelle C3: Charakteristische Werte bei **Querbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80		M20x80
Stahlversagen ohne Hebelarm										0.00
Charakteristische Tragfähigkeit Stahl 4.6	$V_{Rk,s}$	[kN]	4,0	7	3	11,6	9,6	16,8	31,3	49,0
Teilsicherheitsbeiwert	γMs	[-]				1	,67			
Charakteristische Tragfähigkeit Stahl 5.6	$V_{Rk,s}$	[kN]	5,0	9	,1	10,1	9,6	21,1	39,2	61,2
Teilsicherheitsbeiwert	γMs	[-]		1,67		1,25		1,	67	
Charakteristische Tragfähigkeit Stahl 5.8	$V_{Rk,s}$	[kN]	5,0	6	9	10,1	7,2	21,1	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]			1,	,25		1,33		
Charakteristische Tragfähigkeit Stahl 8.8	$V_{Rk,s}$	[kN]	5,0	6	,9	10,1	7,2	21,5	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]			1,	,25			1,33	
Duktilitätsfaktor	k ₂	[-]				1,	0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment Stahl 4.6	M ⁰ _{Rk,s}	[Nm]	6,1	1	5	30	30	52	133	259
Teilsicherheitsbeiwert	γMs	[-]	1,67							
Charakteristisches Biegemoment Stahl 5.6	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65	166	324
Teilsicherheitsbeiwert	γMs	[-]				1,	67			
Charakteristisches Biegemoment Stahl 5.8	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65	166	324
Teilsicherheitsbeiwert	γMs	[-]				1,	,25			
Charakteristisches Biegemoment Stahl 8.8	$M^0_{Rk,s}$	[Nm]	12	3	80	59	60	105	266	519
Teilsicherheitsbeiwert	γMs	[-]				1,	,25			
Duktilitätsfaktor	k ₂	[-]				1,	,0			
Betonausbruch auf der lastabgewandte	n Seite									
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]			1,0	2		1,5	2,	0
Betonkantenbruch										
Wirksame Dübellänge bei Querlast	lf	[mm]	30	30	40	30	40	50	65	80
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	10	12	12	15	20	25

MÜPRO Stahldübel verzinkt, A4, HCR	
Leistung Charakteristische Werte bei Querbeanspruchung, verzinkt (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)	Anhang C3

Tabelle C4: Charakteristische Werte bei **Querbeanspruchung, nichtrostender Stahl A4, HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30	M8x30	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80	
Stahlversagen ohne Hebelarm										
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70)	$V_{Rk,s}$	[kN]	7,0	10	,6	13,4	25,1	41,9	66,5	
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80)	$V_{Rk,s}$	[kN]	8,7	10	,6	13,4	25,1	41,9	66,5	
Teilsicherheitsbeiwert	γMs	[-]				1,56				
Duktilitätsfaktor	k ₂	[-]				1,0				
Stahlversagen ohne Hebelarm										
Charakteristisches Biegemoment (Festigkeitsklasse 70)	M ⁰ _{Rk,s}	[Nm]	11	2	26	52	92	233	454	
Teilsicherheitsbeiwert	γMs	[-]				1,56				
Charakteristisches Biegemoment (Festigkeitsklasse 80)	M ⁰ _{Rk,s}	[Nm]	12	3	30	60	105	266	519	
Teilsicherheitsbeiwert	γMs	[-]				1,33				
Duktilitätsfaktor	k ₂	[-]				1,0		7		
Betonausbruch auf der lastabgewandten	Seite									
Faktor k gemäß ETAG 001, Anhang C bzw. k_3 gemäß CEN/TS 1992-4	k ₍₃₎	[-]	1,0	1	,7	1,	7	2,	0	
Betonkantenbruch		-1-1-1-1								
Wirksame Dübellänge bei Querlast	l _f	[mm]	30	30	40	40	50	65	80	
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	10	12	15	20	25	

MÜPRO Stahldübel verzinkt, A4, HCR	
Leistung Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)	Anhang C4

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
stahl galvanisch verzinkt										
Zuglast im ungerissenen Beton	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8
Verschiebung	δηο	[mm]				0,	24			
	$\delta_{N_{\infty}}$	[mm]				0,	36	-		
Nichtrostender Stahl A4 / HCR										
Zuglast im ungerissenen Beton	N	[kN]	4	4	4,3	-	6,1	8,5	12,6	17,2
Verschiebung	δ_{N0}	[mm]				0,	12			
	$\delta_{N_{\infty}}$	[mm]				0.	24			

Tabelle C6: Verschiebungen unter Querlast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Querlast im ungerissenen Beton	٧	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Verschiebung	δνο	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	δ_{V_∞}	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Nichtrostender Stahl A4 / HCR										
Querlast im ungerissenen Beton	٧	[kN]	3,5	5,2	5,2		6,5	11,5	19,2	30,4
Verschiebung	δνο	[mm]	1,9	1,1	0,7	-	1,0	1,7	2,4	2,6
	δ_{V_∞}	[mm]	2,8	1,6	1,0	-	1,5	2,6	3,6	3,8

Anhang C5